Subject: DECC wrkshp

12 April 2006

Dutch Entertainment Computing Consortium (DECC) Roadmap Workshop Lorentz Center, Leiden

Dutch Experiment Support Center (DESC)

ACTA - Vrije Universiteit Amsterdam

Presentatie:
DECC workshop
12-4-2006

dr.ing. Jack J.W.A. van Loon
DESC (Dutch Experiment Support Center)
ACTA-Free University, Dept. Oral Cell Biology
van der Boechorststraat 7, 1081 BT Amsterdam, NLE-mail: J.vanLoon@VUMC.nl

Tel: +31(0)20444 8686 / 8664 Fax: +31(0)204448683

Mobile phone: +31 (0)6 53700944 Web Site: http://www.desc.med.vu.nl

Dutch Utilisation Center, DUC (I)

Project: 100

Subject: DECC wrkshp

12 April 2006

DUC

Dutch Utilisation Center

NIVR

SRON

funding / politics

DOC

Dutch Operations Center (NLR-NOP)

DESC

Dutch Exp. Support Center (ACTA-Vrije Univ.)

DUT

Dutch Util. of technol (All industrial partners)

maily:

- information
- ground research facilities
- science

Dutch Space

mainly:

- technology
- hardware developmet

- operations
- documentation

Subject: DECC wrkshp

12 April 2006

- National Support of Scientists, Instruments and Operations
- EDR-FRC in cooperation with ESA, Belgium and others
- National Instruments in cooperation with ESA, NASA, CNES and others
- Support of Erasmus User Center (EUC)

Subject: DECC wrkshp

12 April 2006

- Maintenance of ground based facilities
- Specific support and supervision for ground research
- Support development/testing of experiment hardware
- Support for preparations of flight experiments
- Identify and encourage new users
- Familiarisation of future users
- Development / stimulation of new research proposals
- Information and public relation activities
- Education / internships

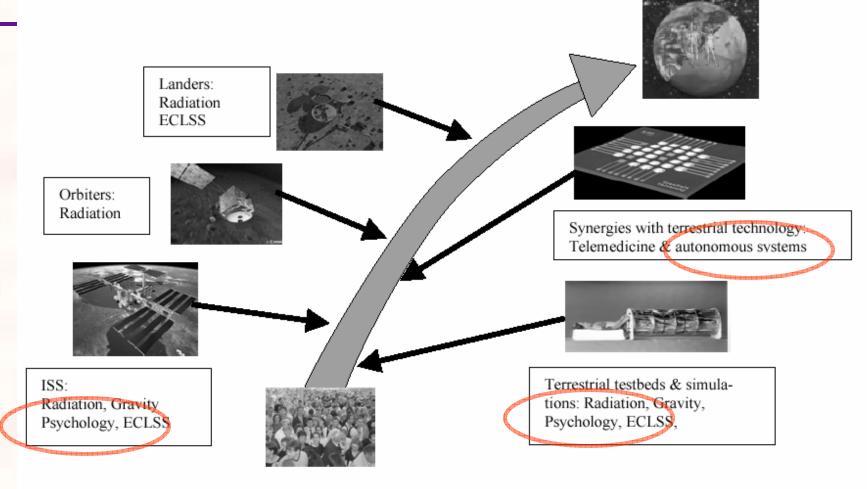


Fig. 5. Roadmap with regard to human health issues for a future Europe strategy towards human exploratory missions.

Gerda Horneck / DLR:

From: http://www.weblab.dlr.de/exo/pdf/Human%20missions-ESA%20SP-021207-fin-fin.pdf

DESC

12 April 2006

Psychological Risks Relevant to Long-Duration Spaceflight

Mental Performance

- Performance decrements due to hypogravity-effects on brain mechanisms
- Performance decrements due to indirect effects of spaceflight-related stressors on the attentional state

Individual Health and Well-Being

- Disturbances of sleep and circadian rhythm
- Dysfunctional affective reactions and impairments of mood
- Mental and behavioural illness

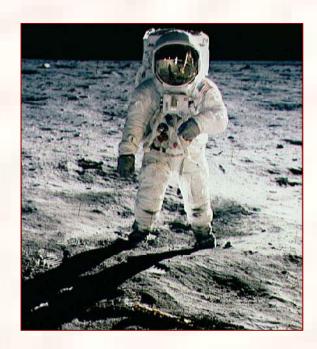
Interpersonal Interactions

- Intracrew Issues
- Issues of Space-Ground Interactions
- Issues of Multicultural Crews

From ESA-Humex study (2001) by D. Manzey, DLR, Hamburg

lamburg

Subject: DECC wrkshp


12 April 2006

Stressors in Space

Space Environment

Space Habitat

Mission Tasks

Social Situation

Subject: DECC wrkshp

12 April 2006

Currently Applied Psychological Countermeasures

Selection

Training

In-Flight Support

- Ground-based monitoring
- Uplink of news
- E-mail up-/downlink
- Private family conferences
- Psychological conferences
- Crew packages
- Onboard entertainment
- Visiting crews

DECC possibility

Project: 100 Subject: DECC wrkshp 12 April 2006

	Station in LEO (MIR, ISS)	Lunar Mission	Mars Mission
Duration	4-6 months	6 months	16-36 months
Crew Size	3-6	4	6 (4/2)
Isolation/Social Monotony	moderate	high	extremely high
Crew Autonomy	low	medium	extremely high
Evacuation Opportunities	yes	yes	no
In-Flight Support Measures			
ground-based monitoring	yes	yes	very restricted
audio/video transmission	yes	yes	very restricted
e-mail up-/downlink	yes	yes	yes
internet access	yes	yes	no
onboard entertainment	yes	yes	yes
re-supply flights	yes	no	no
visiting crews	yes	no	no
Visual Link to Earth	yes	yes	no

DECC possibility

12 April 2006

The 500 and 1000-Day Mars Mission Scenarios:

Generalisability of Current Knowledge from Orbital Flight and Analogue Environments

- Missions to Mars will not be comparable to any other undertaking humans have ever attempted given the distance of travel, the duration of life under constant dependence on life-support systems in isolation and confinement, and the lack of short-term rescue possibilities
- Currently applied countermeasures to maintain individual performance, health and well-being, as well as crew morale via audio-/video contacts can only be provided to a very limited degree

Most of the possible risks arising from psychological issues will be LARGELY INCREASED. In addition new psychological risks will arise which, in principle, cannot be assessed in advance.

From ESA-Humex study (2001) by D. Manzey, DLR, Hamburg

DEST

Subject: DECC wrkshp

12 April 2006

Psychological Key Issues Related to *Behavioural Health*, *Well-Being*, and *Interpersonal Interactions*Shared by Both Reference Missions

- disturbances of circadian rhythm and sleep during transfer phases
- extremely long periods of low workload, monotony, and boredom during transfer phases
- long-term dependence on autonomous life-support systems
- extreme level of social monotony
- extreme high degree of crew autonomy
 - issues of autonomous management of external and internal crises
 - issues of "group-think"
- increased risk of mental and behavioural illness (WP 2200)
- high risk of motivational decline during transfer back
- post-flight adaptation problems

DECC possibility

Specific Psychological Key Issues of the 1000-Day Mission Arising from Leaving 2 CM's in Orbit

- The orbiting crew members will be exposed to *excessive* levels of
 - monotony and boredom (due to low variety of task demands)
 - social monotony (only partially balanced by intercom contacts to surface crew)
 - sensory deprivation (due to stay in the same spaceship for 1000 days)
- Issues of maintaining motivation of orbiting crew
- Break-down of crew cohesiveness
 - interpersonal and "inter-subcrew" conflicts after re-union during transfer back
 - leadership issues

Whenever possible this feature of the 1000-day reference mission should be avoided

12 April 2006

Indeterminable and Uncontrollable Risks of **Mars Missions**

Earth-Out-Of-View Phenomenon

Human responses to loosing the visual link to their home planet are unknown. Conceivable responses include:

- maladaptive affective reactions (e.g. feeling of anxiety, sadness)
- development of mental illness (e.g. anxiety disorder, depression)
- partial or complete loss of commitment to expected system of values and behavioural norms

Levels of Possible Countermeasures

Accomodation of living and working conditions during the mission to human needs and capabilities

- Design of habitat (e.g. private crew quarters, interior decor)
- Design of autonomous systems (e.g. concepts of ajustable autonomy)
- Work-Rest Scheduling

DECC possibility

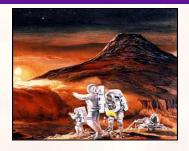
Adaptation of humans to the extreme living and working conditions during the mission

- Selection
- Training
- In-flight support
- Post-flight support

Subject: DECC wrkshp

12 April 2006

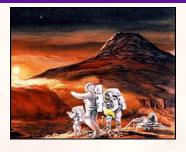
Relative Significance of Psychological Countermeasures for Mars Missions


Selection & Crew-Composition

Pre-Flight Training

In-Flight Monitoring & Support

Proposed Coutermeasures: Selection and Crew-Composition


Selection

Psychiatric screening (select-out)

Review of biographical and family history

Psychological selection (select-in)

- Task motivation
- Cognitive and psychomotor performance capabilites
- Personality traits related to interpersonal behaviour
- Personality traits related to performance under stress
- Interpersonal needs, attitudes, skills

Proposed Countermeasures: Selection and Crew-Composition

Crew-Composition

Crew Size: 4-6 CMs represent minimum size, 6-8 would be better

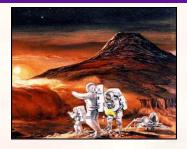
Age: homogeneous crews are to be preferred

Gender: • lack of systematic research/inconsistent experiences

mixed gender crews involve specific issue of contraception

sending married couples is unrealistic and does not solve the problem

minimum of 2 CMs of each sex recommended in mixed gender crews


more open discussion needed

Culture: Crew should consist of individuals who

are as homogeneous as possible (e.g. have lived in common culture)

have experiences with other national/organisational cultures

possess flexibility to adapt to other cultures

Proposed Countermeasures: Selection and Crew-Composition

Crew-Composition

Key Challenge: Compatibility of Individual Characteristics

- Homogeneous personality traits (e.g. agreeableness, conscientiousness)
- Complementary needs instead of need competition (e.g. dominance)
- Congruent needs that can be mutually satisfied (e.g. need for social contact)
- Complementary skills and cognitive abilities
- Shared system of values and behavioural norms
- Positive emotional attitude towards each other

From ESA-Humex study (2001) by D. Manzey, DLR, Hamburg

100-PRE-018-000 DECC Roadmap Workshop input Leiden 1

Subject: DECC wrkshp

12 April 2006

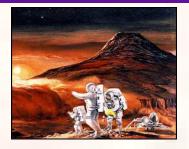
Proposed Countermeasures: Pre-Flight Training

Individual training

- Individual self-care strategies and stress-management skills
- Interpersonal skills

Crew-training

- Support of team-building process
- Anticipatory problem-solving
- Development of crew-supporting skills
- Self-experience and coaching under simulated conditions


Specific training for selected crew members

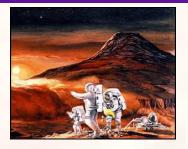
- Commander: leadership skills
- Physician(s): diagnosis and treatment of psychiatric disorders

DECC possibility

Subject: DECC wrkshp

12 April 2006

Proposed Countermeasures: In-Flight Monitoring and Support


In-Flight Monitoring

DECC possibility

- Mental performance
- Circadian rhythm and sleep
- Emotional state and behavioural health
- Interpersonal relationships

Technological developments needed which take the operational constraints of Mars missions into account (e.g. evaluation of mood based on analysis of e-mail communication)

Issues of self-assessment needs to be explored

Proposed Countermeasures: In-Flight Monitoring and Support

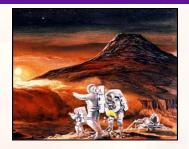
In-Flight Support

■ On-board support for maintaining critical skills

- identify level of fidelity needed
- exploring suitable advanced technology (virtual reality)

Sensory stimulation

Earth-bound views and sounds (based on advanced technology)


Recreational opportunities

- variable exercise equipment for realease of stress
- library of paperback and electronic books
- personal entertainment supplies (e.g. DVD, computer games)
- support of recreational crew activities
- support of constructive leisure activities (e.g. academic studies, hobbies)

DECC possibility

Subject: DECC wrkshp

12 April 2006

Proposed Countermeasures: In-Flight Monitoring and Support

In-Flight Support (cont'd)

News from Earth

- innovative concepts needed (e.g. simulation of 'internet' on on-board server
- technological developments to increase transmission capacity needed

Social contacts to family and friends

on Mars only possible via e-mail and one-way audio/video transmissions

Psychological counselling and guidance

- on Mars only possible via e-mail or one-way audio/video transmissions
- Tools for treatment of psychiatric disorders
 - restraint system and identified list of psychoactive drugs
- Family-support during the mission

DECC possibility (digital buddy)

Subject: DECC wrkshp

12 April 2006

Conclusion: 34 R & D Needs Identified

Fundamental Research (15)

- Cognitive performance and perceptual-motor skills
- Maladaptive individual reactions
 - Sleep and circadian rhythms
 - mood, behavioural health and coping
- Interpersonal interactions

Applied Research and Development (19)

- Habitability and Autonomous Systems
- Selection & Composition
- Training
- Monitoring
- In-flight support

DECC possibility

Subject: DECC wrkshp

12 April 2006

Conclusion: 34 R & D Needs Identified

Strategical Considerations

- Research on ISS
 - only required for questions addressing effects of space specific factors
 - cognitive performance, perceptual-motor skills, sleep, circadian rhythm
- Research in analogue natural environments (e.g. Antartica, deserts)
- Secondary analyses of existing data bases from analogue environments
- Ground-based simulations

Compared to the past a much more coherent long-term research program is needed which assures both, a systematic investigation of individual, environmental and organisational issues critical for Moon/Mars missions, as well as a comparability of different studies

100-PRE-018-000 DECC Roadman Workshon invit Laidan 12-4-2006 nnt

NASA Bioastronautics Roadmap

Project: 100

Subject: DECC wrkshp

12 April 2006

Risks Page 1 of 3

Bioastronautics Roadmap

Home Comments/Feedback ?

Fin

Missions CC Areas

Disciplines

Risks R & T Questions

Tasks

Deliverables

Processes

Search

Links

Current Selection Filters
Crosscutting Area(s)

- 23 Medical Skill Training and Maintenance
- 24 Human Performance Failure Due to Poor Psychosocial Adaptation
- 25 Human Performance Failure
 Due to Neurobehavioral
 Problems

Clear All Filters

Get All Risks in PDF

45 Risks found.

- 21 Rehabilitation on Mars
- 22 Medical Informatice

Risk 24: Human Performance Failure Due to Poor Psychosocial

Crosscutting Area: Behavioral Health and Performance

Discipline: Behavioral Health & Performance and Space Human Factors (Cognitive)

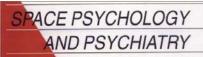
Description: Human performance failure may occur due to problems associated with adapting to the space environment, interpersonal relationships, group dynamics, team cohesiveness, and pre-mission preparation.

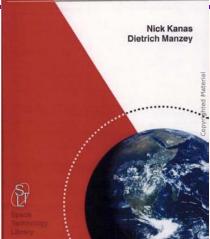
Context / Risk Factors: The isolated and confined nature of space flight, along with its potential hazards, pose human performance related challenges. This risk may be influenced by boredom with available food, crew autonomy and increased reliance on each other, crowding, distance from family and friends, duration of flight, incompatible crewmembers, interpersonal tensions, mechanical breakdowns, poor communications, scheduling constraints and requirements, sleep disturbances, or social isolation.

Justification / Rationale : Moderate likelihood/high consequence risk with low risk mitigation status. Serious interpersonal conflicts have occurred in space flight. The failure

DESC

Project: 100

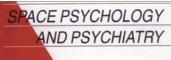

Subject: DECC wrkshp


12 April 2006

A typical image of the F-MARS station

- test in ground research: "Mars stations", Antarctic Stations, military systems (submarines etc.)
- In flight: ISS studies
- Moon-base studies
- Finally: Mars scenarios

707 - 1-1 -	- 6	C	4
Table	OT	Lon	tents


(Underlined sections emphasize empirical work conducted in space)

(Chuci mied sections emphasize empirical work conducted in space)	
ABLE OF CONTENTS	v
REFACE	xi
CHAPTER 1. INTRODUCTION	1
1.1. Humans in space	1
1.2. Stressors and stress in space	1
1.3. Sources of information	3 3 3 4 5 6 6 7 7 8 8
1.3.1. Anecdotal reports	3
1.3.2. Space analog and simulation studies	3
1.3.2.1. Settings	3
1.3.2.2. Relevance to actual space missions	4
1.3.3. Research in space	5
1.4. Basic assumptions	6
1.4.1. Human performance	6
1.4.2. Crew heterogeneity	6
1.4.3. Cultural differences	7
1.4.4. Time effects 1.4.5. Crew-ground relationship	7
1.4.5. Crew-ground relationship	8
1.4.6. Psychological countermeasures	8
1.5. Chapter 1 Summary	
1.6. References	10
CHAPTER 2. BASIC ISSUES OF HUMAN ADAPTATION TO	
SPACE FLIGHT	15
2.1. Space as an extreme environment	15
2.2. Issues of physiological adaptation	16
2.3. Sleep and circadian rhythms	19
2.3.1. Empirical findings from space: phenomenology of sleep	
disturbances	19
2.3.2. Empirical findings from space: sleep disturbances and	
circadian rhythms	20
2.3.3. Operational significance	22
2.4. Psychological adaptation to long-duration space flight:	
general characteristics	24
2.4.1. Stages of adaptation over time	24
2.4.2. Ground research on adaptation stages	25
2.4.3. Empirical findings from space: stages of psychological	
adaptation	26
2.5. Chapter 2 Summary	26
2.6. References	28

CHAPTER 3. HUMAN PERFORMANCE	35
3.1. Basic issues	35
3.2. Possible origins of cognitive performance decrements in	
space	36
3.2.1. Effects of microgravity on specific brain mechanisms	36
3.2.2. Effects of stress on mental performance	37
3.3. Empricial findings from space: cognitive neuroscience	
research	40
3.3.1. Spatial orientation	41
3.3.2. Spatial perception, imagery, and object recognition	43
3.3.3. Mass discrimination	45
3.3.4. Aimed voluntary movements	45
3.4. Empirical findings from space: human performance	
monitoring	48
3.4.1. Results of performance monitoring during short-duration	
space flight	50
3.4.2. Results of performance monitoring during long-duration	
space missions	55
3.4.3. Impairments of tracking and dual-task performance in	
space: effects of microgravity, stress, or both?	58
3.5. Complex cognitive and perceptual-motor skills	61
3.5.1. Ground-based studies	62
3.5.2. Empricial findings from space: effects of stressors on	
complex cognitive and perceptual-motor skills	63
3.6. Chapter 3 Summary	64
3.7. References	65
CHAPTER 4. HUMAN INTERACTIONS	75
4.1 International	75
4.1. Interpersonal issues 4.2. Crew heterogeneity	76
4.2.1. Gender	77
4.2.1. Gender 4.2.2. Cultural differences	78
	80
	81
4.2.4. Personality 4.2.5. Problems related to crew heterogeneity	
4.2.5. Problems related to crew neterogeneity 4.3. Crew cohesion	83 84
4.3.1. Time effects and mission stage	84
4.3.1 Problems related to changes in cohesion	85
4.4. Language and dialect variations	86
	86
4.4.1. Native language versus space terminology 4.4.2. Problems related to language and dialect variations	86 87
4.4.2. Problems related to language and dialect variations 4.5. Crew size	87
4.5.1. The impact of size in small groups	87
4.5.1. The impact of size in small groups 4.5.2. Problems related to crew size	88
4.5.2. Problems related to crew size 4.6. Leadership roles	88 89
4.6.1. Task versus supportive roles	89 89
4.6.2. Problems related to leadership roles	90
more i contento relateu to teauci milp rotes	20

Project: 100 Subject: DECC wrkshp 12 April 2006

Project: 100 Subject: DECC wrkshp 12 April 2006

AND	PSYCHIATRY Nick Kanas
	Nick Kanas Dietrich Manzey
SP /	学
Space	

4.7. Crew-ground interactions	90	6.5. Training	147
4.7.1. Ingroup versus outgroup issues	90	6.5.1. Who should be trained?	148
4.7.2. Displacement	91	6.5.2. What kind of training can be applied?	148
4.7.3. Problems related to crew-ground interactions	92	6.5.2.1. Briefings, lectures, and workshops	148
4.8. Empirical findings from space: human interactions during	~	6.5.2.2. Field exercises	151
the Shuttle/Mir program	92	6.5.2.3. Crew-oriented sensitivity training and team building	151
4.8.1. Procedures	92	6.6. Crew monitoring	153
4.8.2. Results	94	6.6.1. Remote monitoring from Earth	153
4.8.3. Study conclusions	97	6.6.2. Empirical findings from space: monitoring stress through	
4.9. Chapter 4 Summary	98		154
4.10. References	100	voice analysis	
		6.6.3. On-board monitoring	156
CHAPTER 5. PSYCHIATRIC ISSUES	109	6.7. In-flight support	157
		6.7.1. Supportive measures for preventing feelings of monotony,	
5.1. Normal reactions, abnormal reactions, and personal growth	109	boredom, and isolation	158
5.2. Psychiatric problems in space	110	6.7.2. Maintaining contact with family and friends	158
5.2.1. Adjustment disorders	110	6.7.3. Private psychological conferences	159
5.2.2. Somatoform disorders	111	6.7.4. Support of families on Earth	160
5.2.3. Mood and thought disorders	112	6.8. Post-flight readjustment support	160
5.2.4. Post-mission effects: personality changes and marital		6.8.1. Individual issues	160
problems	114	6.8.2. Family issues	161
5.3. Asthenia	115	6.9. Chapter 6 Summary	161
5.3.1. A common space syndrome?	115	6.10. References	163
5.3.1.1. Cultural issues	115		
5.3.1.2. Russian views of asthenia in space	116	CHAPTER 7. FUTURE CHALLENGES	173
5.3.2. Empirical findings from space: asthenia and the		CHAITER /: PETERE CHAELENGES	113
Shuttle/Mir program	118	7.1. Going beyond the Earth's orbit	173
5.3.2.1. Procedures	118	7.2. Future human missions to the Moon and Mars	174
5.3.2.2. Results	119		1/4
5.3.2.3. Study conclusions	119		174
5.4. Treatment considerations	120	base	174
5.4.1. Counseling and psychotherapy	120	7.2.2. Exploratory missions to Mars	175
5.4.2. Psychoactive medications	121	7.3. Applicability of current psychological knowledge to space	
5.5. Psychiatric research in space	123	missions beyond the Earth's orbit	176
5.6. Chapter 5 Summary	123	7.4. Human missions to Mars: new psychological challenges	179
5.7. References	124	7.4.1. Individual adaptation and human performance	179
CHI. BURD C DOLLOHOL COLO. L. COLO. WEDDING		7.4.2. Interpersonal issues	181
CHAPTER 6. PSYCHOLOGICAL COUNTERMEASURES	131	7.4.3. Psychiatric issues	183
(1 C		7.4.4. Psychological countermeasures	184
6.1. General aspects	131 132	7.4.5. The Earth-out-of-view phenomenon	186
6.2. Habitability factors		7.5. Research directions	186
6.3. Work design issues	136	7.6. Chapter 7 Summary	189
6.4. Selection and crew composition	138 138	7.7. References	189
6.4.1. General issues 6.4.2. Select-out: avoiding psychopathology	138		
6.4.3. Select in: the "right stuff"	141	INDEX	193
6.4.4. Crew composition: the problem of interpersonal	141		
compatibility	144		
companions,	144		

Subject: DECC wrkshp

12 April 2006

"Unprecedented periods of confinements, people being away for three years or more, the period of isolation, the lack of capability to rescue people-- all these things become intensified in the case of Mars," Harrison notes. uit: Hariis, Univ. Davis, USA

http://www.org.id.tue.nl/DECC/Mental%20Preparation%20for%20Mars.pdf

2001 Aviation, Space and Environmental Medicine (Vol. 72, No. 5)

Kosslyn and his NSBRI- funded team have worked since 2000 to develop a Palm Pilot- based program called MiniCog, which measures astronauts' cognitive abilities during space flight, comparing them with the astronauts' usual Earth- based scores or to population norms. For example, before going to work on a difficult task-- perhaps repairing malfunctioning equipment on the spacecraft's hull-- an astronaut might use MiniCog to see whether his or her spatial relations are up to snuff. If an astronaut performs poorly at mentally rotating three dimensional objects-- a task adapted from the 1970s work of Stanford psychologists Roger Shepard, PhD, and Jacqueline Metzler, PhD-- a nap or a cup of coffee might be in order, Kosslyn notes. In addition to tests of spatial ability, MiniCog can evaluate an astronaut's level of attention, motor control, working memory and problem- solving, say its developers.

So, a group of NSBRI- funded researchers headed by James Carter, PhD, a clinical psycholo gist at Harvard Medical School, and including former astronaut Jay Buckey, MD, of Dartmouth Medical School, is developing a computer program to assist astronauts dealing with depression or interpersonal conflicts—the two most likely problems to appear during extended space travel, say the scientists.

Project: 100 Subject: DECC wrkshp 12 April 2006

